Coordinated Multi-Agent Learning for Decentralized POMDPs
نویسندگان
چکیده
In many multi-agent applications such as distributed sensor nets, a network of agents act collaboratively under uncertainty and local interactions. Networked Distributed POMDP (ND-POMDP) provides a framework to model such cooperative multi-agent decision making. Existing work on ND-POMDPs has focused on offline techniques that require accurate models, which are usually costly to obtain in practice. This paper presents a model-free, scalable learning approach that synthesizes multi-agent reinforcement learning (MARL) and distributed constraint optimization (DCOP). By exploiting structured interaction in ND-POMDPs, our approach distributes the learning of the joint policy and employs DCOP techniques to coordinate distributed learning to ensure the global learning performance. Our approach can learn a globally optimal policy for ND-POMDPs with a property called groupwise observability. Experimental results show that, with communication during learning and execution, our approach significantly outperforms the nearly-optimal non-communication policies computed offline.
منابع مشابه
Decentralized Communication Strategies for Coordinated Multi-Agent Policies
Although the presence of free communication reduces the complexity of multi-agent POMDPs to that of single-agent POMDPs, in practice, communication is not free and reducing the frequency of communication is often desirable. We present a novel approach for using centralized “single-agent” policies in decentralized multi-agent systems by maintaining and reasoning over the collection of possible j...
متن کاملReinforcement Learning for Decentralized Planning Under Uncertainty (Doctoral Consortium)
Decentralized partially-observable Markov decision processes (Dec-POMDPs) are a powerful tool for modeling multi-agent planning and decision-making under uncertainty. Prevalent Dec-POMDP solution techniques require centralized computation given full knowledge of the underlying model. But in real world scenarios, model parameters may not be known a priori, or may be difficult to specify. We prop...
متن کاملCoordinated Multi-Agent Reinforcement Learning in Networked Distributed POMDPs
In many multi-agent applications such as distributed sensor nets, a network of agents act collaboratively under uncertainty and local interactions. Networked Distributed POMDP (ND-POMDP) provides a framework to model such cooperative multi-agent decision making. Existing work on ND-POMDPs has focused on offline techniques that require accurate models, which are usually costly to obtain in pract...
متن کاملRehearsal Based Multi-agent Reinforcment Learning of Decentralized Plans
Decentralized partially-observable Markov decision processes (Dec-POMDPs) are a powerful tool for modeling multi-agent planning and decision-making under uncertainty. Prevalent Dec-POMDP solution techniques require centralized computation given full knowledge of the underlying model. Reinforcement learning (RL) based approaches have been recently proposed for distributed solution of Dec-POMDPs ...
متن کاملMessage-passing algorithms for large structured decentralized POMDPs
Decentralized POMDPs provide a rigorous framework for multi-agent decision-theoretic planning. However, their high complexity has limited scalability. In this work, we present a promising new class of algorithms based on probabilistic inference for infinite-horizon ND-POMDPs—a restricted Dec-POMDP model. We first transform the policy optimization problem to that of likelihood maximization in a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012